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ABSTRACT
As deep neural networks become more and more common in
mission-critical applications, such as smart medical care, drones,
and autonomous driving, ensuring their reliable operation becomes
critical. The data in the hardware memory is susceptible to bit-flip
due to external factors, which leads to a decrease in the inference
accuracy of the deep neural network deployed on the hardware.
We solve this problem from the perspective of the deep neural net-
work itself, We use a reinforcement learning algorithm to search
for the optimal bit width for the weights of each layer of the deep
neural network. According to this bit width strategy, the deep neu-
ral network is quantified, which maximizes the limitation of data
fluctuations caused by bit-flip and improves the fault-tolerance
of the neural network. The fault-tolerance of the network model
compared with the original model, the solution proposed in this
paper improves the fault-tolerance of LeNet5 model by 8.5x , the
fault tolerance of MobileNetV2 model by 15.6x , the fault tolerance
of VGG16 model by 14.5x , and the accuracy decreases negligibly.
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1 INTRODUCTION
In recent years, the classification accuracy of convolutional neural
networks on the ImageNet dataset has surpassed that of humans.
Due to the superior performance of deep neural networks, deep
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neural networks have been applied to various key fields, such as
national defense, health, finance and control fields.

When deep neural networks are deployed on various hardware
devices, there are hardware-related reliability problems, and this
problem is currently not paid enough attention. The most common
is the occurrence of soft errors in integrated circuits. Soft errors are
transient errors in the circuit caused by various noises and inter-
ferences, such as temperature, voltage fluctuations and radioactive
particle impact. With the reduction in the size of integrated circuit
logic gates, the reduction of power supply voltage and the increase
of circuit frequency, integrated circuits have becomemore andmore
sensitive to various disturbances, and the problem of soft errors
in nano-integrated circuits has become more and more prominent.
Soft errors may cause data errors, and may even cause the entire
system to crash. Although the algorithms of deep neural networks
have certain fault tolerance, such as the Relu function, BN algorithm
and pooling layer that most deep neural networks have, although
these algorithms have certain fault concealment capabilities, the
facts have proved that these are still far not enough.

Many applications use the data type of single-precision floating-
point numbers to represent these parameters, and the range that
single-precision floating-point numbers can represent far exceeds
the range required by the data [1]. Using fewer bits to represent data,
that is, quantization, is a commonly used neural network compres-
sion technique, which can effectively reduce energy consumption
and improve performance.

Recent studies have shown that the quantified neural network
model has higher fault tolerance than the unquantified model [2].
The reason is that the quantized data has a small fluctuation range
when subjected to bit inversion. The deep neural network model
after binary quantization has the highest fault tolerance [3]. How-
ever, the accuracy of the quantized binary deep neural network
model is more obvious than that of the full-precision deep neural
network model [4].

We propose a deep neural network mixed-precision quantiza-
tion method based on reinforcement learning, which improves
the fault tolerance of the deep neural network model under the
premise of ensuring the accuracy of the deep neural network model.
When hardware equipment fails, the quantified deep neural net-
work model can reduce the harm of these faults to the data, and
then can ensure the actual accuracy of the deep neural network
model. Improving the reliability of the applications that deploy
these deep neural network models can reduce hardware costs and
protect the safety of people’s property.
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2 RELATEDWORKS
2.1 Fault Tolerance of Deep Neural Networks
At present, work has been conducted on the fault tolerance of deep
neural networks. For example: FTT-NAS [5]. This work proposes a
fault-tolerant neural network architecture search to automatically
find a neural network architecture that is reliable for various faults
in today’s equipment. This scheme first uses the controller to sam-
ple different deep neural network structures from the search space,
and then performs fault tolerance training on the sampled neural
network structures to obtain candidate deep neural network mod-
els. Then verify the accuracy and fault tolerance on the hardware
accelerator. Combine fault tolerance and accuracy to as a reward
R, and finally use the reward R to update the controller to sam-
ple a deep neural network architecture with better fault tolerance
and accuracy. Some work has proposed a technique based on the
clipping activation function (FT-ClipAct) [6], which systematically
defines the clipping threshold of the activation function to improve
the ability of deep neural networks to recover from data failures,
that is, the fault tolerance of deep neural networks. The specific
steps are to first count the maximum activation of each layer of the
deep neural network, then dynamically set the unbounded activa-
tion function to be bounded, and set the upper bound to ACTmax ,
finally fine-tune the ACTmax . When the data in the memory is bit
inverted, the data has obvious deviation. After the error data passes
through this activation function, the error data is adjusted. The
larger propagation of errors is avoided, so the fault tolerance of the
deep neural network model is improved.

2.2 Mixed-Precision Quantization Method of
Deep Neural Network

With the development of variable bit-width accelerators [7], mixed-
precision quantization is considered to be a more promising quan-
tization method. In a deep neural network model, the importance
or redundancy of different layers is different, and the sensitivity
to quantization between similar different layers is also different.
Using a uniform and aggressive quantization bit width for all layers
of a deep neural network will seriously damage the accuracy of
the deep neural network. Therefore, using different quantization
bit widths for different layers of the deep neural network, that is,
using mixed-precision quantization can solve the above-mentioned
layer sensitivity. The problem of mixed-precision quantization can
simultaneously take into account the fault tolerance and accuracy
after quantization. In recent years, many works have been studying
the mixed-precision quantification of deep neural networks. The
most difficult point of this type of work is to find the optimal bit
width allocation scheme for each layer. The search space grows
exponentially with the depth of deep neural networks. According to
how to find the optimal bit width for each layer, these tasks can be
roughly divided into two categories. One is to extract the features
of each layer of the deep neural network, and use the features of
the layer to allocate the bit width [8] [9] [10]. The other is based
on the automatic mixed-precision quantification of reinforcement
learning [11] [12], which uses reinforcement learning agents to find
the optimal bit-width allocation scheme. Both types of schemes
can achieve the effect of mixed-precision quantization. The former

relies on expert experience to allocate the depth of each layer of
the deep neural network to easily reach the sub-optimal level of the
model. The latter is based on reinforcement learning and the mixed-
precision quantization scheme is fully automated and better. But
they did not consider the impact of mixed-precision quantization
on the fault tolerance of deep neural networks.

3 FRAMEWORK DESIGN
We propose an automatic mixed-precision quantization framework
with fault tolerance as the main goal. The framework uses reinforce-
ment learning algorithms to automatically determine the mixed-
precision quantization strategy for various deep neural network
models, that is, determine the optimal position for each layer of
the deep neural network model. The quantization strategy is cus-
tomized according to different deep neural networks to achieve
the purpose of improving the fault tolerance of the deep neural
network model, and the accuracy loss is negligible.

3.1 Method Overview
As shown in Figure 1, firstly, input the unquantized deep neural
network model and the available set of quantized bit widths into
our framework, the models are represented by 32-bit floating point
numbers. Then the reinforcement learning agent selects the bit
width within our pre-defined range according to the state of each
layer of the current deep neural network, and then quantifies the
deep neural network model with mixed-precision according to
the selected bit width and our quantitative formula, verifies the
accuracy and fault tolerance on the verification set. Regarding the
combination of accuracy and fault tolerance as a reward for the
reinforcement learning agent, the agent is motivated to take actions
that maximize the reward, that is, to choose the best bit width for
each layer. When the maximum number of iterations is reached,
output the optimal bit width of the model. After verification, this
model has better fault tolerance than the previously unquantified
model, and the accuracy loss is negligible.

3.2 Fault Tolerance Verification Framework
The fault tolerance verification method we proposed in 3.1 Evalu-
ating the fault tolerance of the unquantified deep neural network
model and the quantified model respectively. The first is to evaluate
the fault tolerance of the unquantified deep neural network, and
obtain the fault tolerance value of the model. The fault tolerance
verification process is shown in Figure 2. First, the model uses a ran-
dom method to inject faults into the bits of the each layer’s weights.
Then test the accuracy of the deep neural network after injecting
the fault on the verification set. After we inject the fault, the deep
neural network may have a small loss of accuracy, because the deep
neural network itself has a certain fault tolerance, but it may also
have a large loss of accuracy, such as a sudden drop in accuracy
of 50%. When the accuracy loss is small, we continue to increase
the BER(bit error rate) for fault injection until the accuracy loss
suddenly exceeds 50%. We regard the value of the BER where the
accuracy suddenly drops by more than 50% as the fault tolerance
of the model. The mixed-precision quantitative model is also used
for fault injection in the same way as above, and finally the fault
tolerance value of the deep neural network model after quantization
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Figure 1: An Overview of Our Framework.

of mixed precision is obtained. Experimental comparison found
that the fault tolerance of several deep neural network models after
using our method has been improved.

3.3 Reinforcement Learning Algorithm
We choose DDPG (Deep Deterministic Policy Gradient) as the re-
inforcement learning algorithm used in our experiment. It is an
algorithm to solve continuous control problems [13], which is com-
posed of Actor network and Critic network. The state space of our
reinforcement learning algorithm is based on the observation of
the characteristic state of each layer of the deep neural network
to obtain a multi-dimensional vector. As shown in Formula 1 and
Formula 2, L represents the layer of the network, Cin represents
the number of input channels in this layer, Cout represents the
number of output channels, Stride represents the convolution step
size, and KernalSize represents the size of the convolution kernel
. We set the KernalSize of the fully connected layer to 1, and the
Stride to 0.WeiдhtSize represents the number of weights of this
layer, FeatSize represents the number of feature maps of this layer,
andAL represents the actions of the L layer. We normalize the value
range of these vectors to [0, 1] so that they are in the same range.

Figure 2: An Overview of Our Accuracy and Fault-Tolerance
Verification Framework.

By encoding these feature information, it is then used as the obser-
vation state of the reinforcement learning agent. The reinforcement
learning agent makes actions by observing this information, that
is, the selection of the weight width.

The state space of the convolutional layer:

SL = (L,Cin,Cout , Stride,KernalSize,WeiдhtSize, FeatSize,AL−1)
(1)

The state space of the fully connected layer:

SL = (L,Cin,Cout , 0, 1,WeiдhtSize, FeatSize, FeatSize, AL−1)
(2)

The range of the mixed-precision quantization bit width we de-
signed is [2, 8], that is, Bmax is 8 and Bmin is 2. Because the DDPG
algorithm is an algorithm for dealing with continuous action prob-
lems, the action space of the reinforcement learning algorithm we
designed is [0, 1]. AL represents the action of the reinforcement
learning of the L-th layer, and BL represents the quantization bit
width of the L-th layer, and then formula 3 is used to map the action
space to the range of the bit width.

BL = round (Bmin − 0.5 + AL ∗ (Bmax − Bmin + 1)) (3)

As shown in formula 4, ACCquant represents the accuracy of the
network model after quantization, and ACCor iдin represents the
initial accuracy of the network. TOLEquant represents the fault
tolerance of the quantified network model. TOLEor iдin represents
the unoptimized initial fault tolerance of the network model. γ is
the optimization coefficient, and this value is set to 0.5. According
to this reward function, the reinforcement learning agent is guided
to update the action. After several rounds of iteration, a neural
network model with high precision and high fault tolerance can be
obtained.

R = γ
(
ACCquant − ACCor iдin

)
+(1 − γ )

(
TOLEquant TOLEor iдin

)
(4)
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Table 1: Comparison of Fault Tolerance and Accuracy of
LeNet Model after Applying Our Framework

Method Bits of each layer Acc Tole

Unquantified 32 bits float 98.2% 2×10-5
Ours [2,4,3,4,4] 97.1% 1.7×10-4

3.4 Design of Quantization Function
Experiments show that the weight of the deep neural network is
mostly near 0, so the original weight is first scaled to [-1, 1]. After
the deep neural network passes through the activation layer, the
value is intercepted to a number greater than 0, so the activation
value is scaled to [0, 1]. According to the optimal bit width B of each
layer obtained in 3.3, quantization formula 4 is used to quantize
the weight. Use Equation 5 to quantify the activation value. The
weight is signed, so the first bit is reserved as the sign bit, and the
rest are digital bits. The integer bit defaults to 0. The activation
value is unsigned, and all B bits represent values.Wi represents
an unquantized floating-point number, andWk represents a quan-
tized fixed-point number. Ai represents the activation value of the
floating-point number before quantization, and Ak represents the
activation value of the fixed-point number after quantization.

Wk =
1

2B−1 − 1
round

((
2B−1 − 1

)
∗Wi

)
(5)

AK =
1

2B − 1
round

((
2B − 1

)
∗Ai

)
(6)

4 EXPERIMENT
In the experiment, the LeNet5 model was tested on the MNIST, and
the MobileNetV2 and VGG16 models were tested on the CIFAR10.
The unquantized model uses 32-bit floating point numbers to rep-
resent weights and activation values. The comparison experiment
performed mixed-precision quantization and fault injection on the
weights, but the activation values of all layers were uniformly quan-
tized to 8 bits. The experiment codes are all written with Pytorch
library.

4.1 Experiment Results
As shown in Table 1, after training, the LeNet5 network model is
tested on the MNIST data set and the accuracy is 98.2%. The original
model is verified for fault tolerance, and the fault tolerance of the
network model is 2×10-5. After the optimization of our framework,
the accuracy of the network model is 97.1%, and the fault tolerance
of the network model is 1.7×10-4. The fault tolerance of the model
optimized by our method is 8.5x higher than that of the original
model.

Table 3: Comparison of Fault Tolerance and Accuracy of
VGG16 Model After Applying Our Framework

Method Bits of each layer Acc Tole

Unquantified 32 bits float 93.5% 2.4×10-6
Ours [5,7,4,6,3,5,7,5,3,5,

3,5,3,5,4,5]
91.6% 3.5×10-5

As shown in Table 2, the MobileNetV2 model is trained on the
CIFAR10 data set, and inference on the test set shows that the
network accuracy is 92.3%, and the fault tolerance of the model after
fault injection is 2.5×10-6. After the optimization of our method,
the accuracy of the network model is 90.7%, and the fault tolerance
of the model is 3.9×10-5. The fault tolerance of the model optimized
by our method is 15.6x higher than that of the original model.

As shown in Table 3, the unquantified VGG16model is verified on
the CIFAR10 data set with an accuracy of 93.5% and a fault tolerance
of about 2.4×10-6. The fault tolerance of the model after optimiza-
tion by our method is about 3.5×10-5. The accuracy of the network
model is 91.6%, and the fault tolerance of the VGG16 model opti-
mized by our method is 14.5x higher than that of the original model.

Based on the above data, we can conclude that the fault tolerance
of the network model using our proposed mixed-precision quan-
tification scheme is improved compared with the original network
model. After the networkmodel parameters are quantified as a fixed-
point number using the mixed-precision of our proposed scheme,
when the parameter is bit flipped, the data fluctuation changes little,
so the impact of data failure on the network accuracy is reduced.

5 CONCLUSION
We propose a quantification framework with fault tolerance as the
main goal. This framework is based on reinforcement learning to
quantify deep neural networks with mixed- precision. Not only
can the model be compressed, but the most important thing is to
improve the fault tolerance of deep neural networks by limiting
the fluctuation of data bit flips. At present, only some data sets and
deep neural networks have been made. In future work, we hope
to add the IMAGENET data set and more complex networks to
prove our conclusions. This framework can be used in various deep
neural networks and has strong universal applicability. Ensure
the reliability of the deployment of deep neural network model
hardware.
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Table 2: Comparison of Fault Tolerance and Accuracy of MobileNetV2 Model after Applying Our Framework

Method Bits of each layer Acc Tole

Unquantified 32 bits float 92.3% 2.5×10-6
Ours [6,6,5,4,6,6,8,6,4,8,6,6,8,6,5,8,6,6,8,6,3,6,6,6,7,5,8,7,3,6,6,4,6,7,6,6,8,6,6,7,6,6,5,6,6,5,6,6,6,6,5,6,6,6] 90.7% 3.9×10-5
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